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Abstract

The aim of this paper is the numerical simulation of surface diffusion processes in the presence of a strong anisotropy

and curvature dependence in the surface energy. We derive semi-implicit finite element discretizations based on a split-

ting into three second-order equations. The discretization we use yields indefinite linear systems for the nodal values of

the height function, the curvature concentration, and the chemical potential. We provide several numerical examples

and parametric studies with respect to some of the parameters in the surface energy and with respect to the coverage.

The results, to our knowledge the first that have been obtained for this model, confirm theoretical predictions, namely

partial faceting of the surfaces with rounded corners.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Anisotropic surface diffusion processes (cf. [6,9,21]) are of high importance in modern material and nano

science. The applications range from the self-organized growth of nanostructures over crystal growth,

shape transitions in alloys, to the formation of basalt columns caused by volcanic activities. Of particular

importance are systems with a strongly anisotropic non-convex surface energy. In this case, the surface dif-

fusion flow may lead to faceted surfaces, i.e., surfaces composed by plane segments whose orientation is

determined by the specific anisotropic surface tension. Using this representation, simulations of strongly

anisotropic diffusion processes based on the solution of ordinary differential equations have been carried
out in [7,25].
0021-9991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
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However, many observed interfaces are not fully faceted, but rather have rounded corners. As a model

for this effect, it has been proposed by several authors (cf. [14–17,23,24]) to incorporate a higher-order term

dependent on the mean curvature of the surface into the surface energy functional. The corresponding flow

is a sixth-order parabolic partial differential equation with strong nonlinearities, which is difficult to solve

numerically. Previous simulations were based on asymptotic models obtained from long-wave expansions
(cf. [14,15,23]), but to our knowledge no simulations have been performed for the exact model yet. The aim

of this paper is the development of numerical methods for the full model of anisotropic surface diffusion

processes with curvature-dependent energy.

Our approach is based on a splitting into three second-order equations, which is motivated by the re-

cently proposed methods for isotropic and weakly anisotropic surface diffusion (cf. [1,2,11]) using a split-

ting of fourth-order flows into two equations. In the case of the flow of a curve in R2 (which one might also

call curve diffusion for obvious reasons), the splitting can be performed in a rather straightforward way

using the chemical potential and the mean curvature as additional variables, while the situation is more
complicated for a surface in R3. We shall demonstrate below that a ‘‘curvature concentration’’ should be

used instead of the curvature and the time discretization should be based on a local-in-time variational prin-

ciple. Due to the differences between curve and surface diffusion we shall treat their numerical simulation in

different sections of this paper.

For simplicity and since it is a very realistic assumptions for many practical applications we shall always

assume that the interface (surface or curve) can be represented as the graph of a function. We denote the

evolving interface by C and represent it as the graph of a function u over a fixed domain X � Rd ; d ¼ 1; 2;
i.e.,
CðtÞ ¼ fðx; uðx; tÞÞjx 2 Xg: ð1:1Þ
Corresponding to this representation, the normal n, the length of a surface element Q, and the mean cur-

vature j are given by
Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jruj2

q
; n ¼ 1

Q
ð�ru; 1Þ; j ¼ div

ru
Q

� �
: ð1:2Þ
Following [16,17] we assume the surface energy to be of the form
EðuÞ ¼
Z
X
cðn; jÞQ dx; ð1:3Þ
with the surface tension
cðn; jÞ ¼ a 1þ �
Xdþ1

j¼1

n4j þ mj2

 !
ð1:4Þ
for positive parameters a, �, and m. We want to mention that our approach is able to deal with more general

surface energies of the form
cðn; jÞ ¼ að1þ c0ðnÞ þ mj2Þ; ð1:5Þ

with only minor modifications. The specific form of c0 we use is a standard model for cubic anisotropy,

which seems to be suitable for several important materials (in particular many semiconductors and

metals).

The surface diffusion flow models the diffusion of atoms along the the bounding surface of a solid body

due to a difference in the chemical potential (i.e., the energy variation due to adding or removing a single

atom on the surface). Using the standard diffusion flux law and Fick�s law as a constitutive relation, the
surface diffusion flow including deposition effects is obtained via the velocity (cf. [6,21])
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V ¼ F� DSX
2r

kT
ðDSlÞn on C; ð1:6Þ
where F is a deposition flux, DS a diffusion coefficient of the adatoms, X the atomic volume, r the surface

density, k the Boltzmann constant, and T the temperature. The operator DS denotes the Laplace–Beltrami

operator on the surface, i.e.,
DS ¼ divSrS:
The surface gradient is given by
rSw ¼ ðI� n� nÞrdþ1w;
where divd+1 and $d+1 denotes the gradient with respect to ðx; zÞ 2 Rd � R. The surface divergence is

defined as usual by an adjoint relation, i.e.,
Z
C
ðdivSWÞw dS ¼ �

Z
C
W � rSw dS
for all sufficiently smooth periodic functions W and w on C.
The variable l denotes the chemical potential given as the negative variation of the surface energy with

respect to the surface, i.e., with the above graph representation
l ¼ �E0ðuÞ: ð1:7Þ

Since in the graph case l only depends on x 2 Rd but not on z, we have $d+1l = ($l,0), and hence, a

straightforward computation shows
rSl ¼ ðI� n� nÞðrl; 0Þ ¼ PðuÞrl;�ru � rl

Q2

� �
with the reduced projection matrix onto tangential directions P(u), given by
PðuÞ ¼ I� ru�ru

1þ jruj2
: ð1:8Þ
This simplification in the graph case allows to derive a partial differential equation for the height function u

from the above formulation (1.6).

In order to compute the Laplace–Beltrami operator applied to l, consider a smooth periodic test func-

tion w depending on x only. Then, by standard transformation of variables and Gauss� theorem,
Z
C
ðDSlÞw dS ¼ �

Z
C
rSl � rSw dS ¼ �

Z
C
ðI� n� nÞrdþ1l � rdþ1w dS

¼ �
Z

C
PðuÞrl;�ru � rl

Q2

� �
� ðrw; 0Þ dS ¼ �

Z
X
ðPðuÞrlÞ � rwQ dx

¼
Z

X

1

Q
div ðQPðuÞrlÞwQ dx ¼

Z
C

1

Q
div ðQPðuÞrlÞw dS;
and since w is arbitrary, one obtains
DSl ¼ 1

Q
div ðQPðuÞrlÞ:
By taking the inner product of the velocity V ¼ ð0; ou
otÞ and the normal n, we obtain a partial differential

equation for the height function u as
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ou
ot

¼ �DSX
2r

kT
div QPðuÞrlð Þ þ F � ð�ru; 1Þ: ð1:9Þ
For the sake of simplicity we shall assume in the following that the scaling of time and chemical potential

are such that a = 1 and DSX
2r

kT ¼ 1. Moreover, we consider the simple, but realistic case of a deposition in

vertical direction, i.e., F = fed+1 and thus, F Æ (�$u,1) = f. Hence, the partial differential equation for u

we shall investigate is given by
ou
ot

¼ �div QPðuÞrlð Þ þ f : ð1:10Þ
The relation (1.10) looks like a low order partial differential equation at the first glance, but a detailed inves-

tigation of (1.7) for the above form of the surface energy will show that E0ðuÞ corresponds to a fourth-order

differential operator applied to u, and hence, (1.10) is a sixth-order equation. The boundary conditions we
shall use are homogeneous Neumann conditions, i.e.,
ru � noX ¼ rðQjÞ � noX ¼ rl � noX ¼ 0; on oX; ð1:11Þ

where j denotes the mean curvature and l the chemical potential (see the next section for detailed defini-

tions). An alternative model used in several cases are periodic boundary conditions, which could easily be

incorporated into our approach.

This paper is organized as follows: In Section 2, we discuss the basic properties of anisotropic surface
diffusion such as volume conservation, energy decay, and the variations of the surface energy. Using a var-

iational principle for the surface diffusion flow, we derive a semi-implicit finite element method in Section 3,

and discuss the solution of the arising finite-dimensional problems in Section 4. We present several numer-

ical results for curve and surface diffusion in Section 5. Finally, conclusions and an outlook to further work

are given in Section 6.

Throughout the paper, we shall use standard notation for differential and integral operators, in par-

ticular we shall denote partial derivatives of a function u with respect to a variable t by ou
ot or ut, and

gradients with respect to the spatial variable x by $. Moreover, we shall use standard notation for
Lebesgue spaces Lp(X) and Sobolev spaces Wk,p(X) and Hk(X) = Wk,2(X) (cf. [19] for detailed

definitions).
2. Anisotropic surface diffusion flows

In the following, we derive the specific form of the chemical potential in anisotropic surface diffusion

with curvature-dependent energy. Moreover, we discuss some fundamental properties of surface diffusion
flows.

2.1. Surface energy and chemical potential

We start by computing the chemical potential given as the variation of the surface energy E with respect

to the height function u. For this sake we split the energy into
EðuÞ ¼ E1ðuÞ þ E2ðuÞ; ð2:1Þ

with E1 denoting the standard anisotropic term
E1ðuÞ :¼
Z
X

1þ c0ðnÞð ÞQ dx; ð2:2Þ
where c0ðnÞ ¼ �
Pdþ1

j¼1 n
4
j in the case of (1.4), and with the curvature-dependent term
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E2ðuÞ :¼ m
Z
X
j2Q dx: ð2:3Þ
The derivative of the first term is well established in the literature (cf. e.g. [10,11]), so we just state the cor-

responding result.

Proposition 1. The first variation of the functional E1 at v 2 H1(X) in direction u 2 H1(X) is given by
E0
1ðvÞu :¼

Z
X
CðrvÞ � ru dx; ð2:4Þ
where C is defined by
CðpÞ ¼ rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jpj2

q
þ
Pd

j¼1p
4
j þ 1

ð1þ jpj2Þ3=2

" #
ð2:5Þ
for p 2 Rd in the case of the cubic symmetry (1.4), and
CðpÞ ¼ rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jpj2

q
þ c0ðnÞ

� �
ð2:6Þ
for p 2 Rd in the general case (1.5).

One can easily show that the surface energy part E1 is non-convex for � > 1/3 and therefore the corre-

sponding surface diffusion flow would be ill-posed for m = 0. In the one-dimensional case, we plot the sur-

face tension 1þ �
Pdþ1

j¼1 n
4
j as function of ux for different values of � to illustrate this behaviour (see Fig. 1).

In order to compute the derivative of the second term, we start with the variation of the curvature term.
Fig. 1. Plot of the surface energy density 1þ �ðn41 þ n42Þ for different values of �.
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Lemma 2. Let v 2 H2(X) and define
jðvÞ :¼ div
rvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jrvj2
q

0
B@

1
CA 2 L2ðXÞ:
Then the first variation of j at v in direction u 2 H2(X) is given by
j0ðvÞu ¼ div
PðvÞruffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrvj2

q
0
B@

1
CA; PðvÞ ¼ I� rv�rv

1þ jrvj2
: ð2:7Þ
Proof. Since the divergence operator is linear and continuous on the function spaces we use, it suffices to

compute the derivative of the term nðvÞ ¼ rv=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrvj2

q
, which is given by
n0ðvÞu ¼ ruffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrvj2

q � ðru � rvÞrvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrvj2

q 3
:

Introducing the matrix P(v) yields (2.7). h

The above result on the derivative of the mean curvature allows to compute the first variation of E2.

Proposition 3. Let u 2 H2(X) \W1,1(X) and j(u) 2 H1(X). Then the derivative of the functional E2 at u in

direction u 2 H2(X) is given by
E0
2ðuÞu ¼ m

Z
X

�2
PðuÞrðjQÞ

Q
� ruþ j2 ru � ru

Q

� �
dx: ð2:8Þ
Proof. A standard computation yields
E0
2ðuÞu ¼ m

Z
X

2jQðj0ðuÞuÞ þ j2 ru � ru
Q

� �
dx:
By inserting (2.7) and using Gauss� Theorem we deduce (2.8). h
2.2. Basic properties of surface diffusion

In the following, we review some basic properties of solutions of the surface diffusion flow. A first nat-

ural property of surface diffusion flows is volume conservation, i.e., in absence of a deposition flux, the

volume
V ðtÞ :¼
Z
X
uðx; tÞ dx ð2:9Þ
is constant. In presence of deposition, the volume change is proportional to the deposited amount of mate-

rial. This property can easily be verified from the diffusion form (1.10) by multiplying with the constant

function u ” 1 and integrating over X, which implies due to Gauss� theorem
oV ðtÞ ¼
Z

utðx; tÞ dx ¼ �
Z

PðuÞrl � noXQ daþ
Z

f ðx; tÞ dx:

ot X oX X



608 M. Burger / Journal of Computational Physics 203 (2005) 602–625
Since the first term on the right-hand side vanishes due to the boundary conditions, we obtain
V ðtÞ ¼ V ð0Þ þ
Z t

0

Z
X
f ðx; tÞ dx ds; ð2:10Þ
and in particular, the volume remains constant for f ” 0. Note that the volume conservation is clearly inde-

pendent on the specific model for the energy functional, but is only caused by the diffusion process. As we
shall see below, this property is conserved by the numerical method we use.

A second important property for the surface diffusion flow, which is independent of the specific energy

functional and which should be conserved to some extent within a numerical scheme, is the energy decay.

To obtain this kind of estimate we multiply (1.10) by �l and (1.7) by ut and integrate both over X. Adding

the results yields
Z
X
ðQðPðuÞrlÞ � rlþ E0ðuÞutÞ dx ¼ �

Z
X
fl dx:
Since
R
XE

0ðuÞut dx ¼ o
otEðuÞ, we obtain after integration with respect to time
EðuÞ þ
Z t

0

Z
X
ðPðuÞrlÞ � rlQ dxds ¼ Eðu0Þ þ

Z t

0

E0ðuÞf ds:
Hence, the surface diffusion flow energy exhibits a natural energy decrease except for the external energy

source due to deposition.

The energy decay estimate reflects the gradient flow structure of surface diffusion, which is obtained as a
gradient flow in the Hilbert space H�1(C), which can be defined as the image of the Laplace–Beltrami oper-

ator from the Sobolev space H1(C). Following [8], this gradient flow is can be defined as the limit of min-

imizers u(t + s) of
Eðuðt þ sÞÞ þ s
2

Z
X
ðPðuðtÞÞrlÞ � rlQðtÞ dx ! min

l;uðtþsÞ
ð2:11Þ
subject to the constraint
�div ðQðtÞPðuðtÞÞlÞ ¼ uðt þ sÞ � uðtÞ
s

� f ; ð2:12Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

given u(t) and QðtÞ ¼ 1þ jruðtÞj2.

We shall briefly outline this limit based on the Karush–Kuhn–Tucker for (2.11) and (2.12). The Lagran-

gian corresponding to the constrained problem (2.11) and (2.12) is given by
Lðu; l; pÞ ¼ EðuÞ þ s
2

Z
X
ðPðuðtÞÞrlÞ � rlQðtÞ dxþ s

Z
X
ðPðuðtÞÞrlÞ � rpQðtÞ dx

�
Z
X
ðu� uðtÞ � sf Þp dx
and the corresponding optimality conditions are given by
E0ðuÞ � p ¼ 0;

� div ðQðtÞPðuðtÞÞrðlþ pÞÞ ¼ 0;

� div ðQðtÞPðuðtÞÞrlÞ � u� uðtÞ
s

þ f ¼ 0:
From the second equation it is easy to conclude that p = �l and hence, the minimizer u = u(t + s)
satisfies
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div ðQðtÞPðuðtÞÞr½E0ðuðt þ sÞÞ�Þ ¼ uðt þ sÞ � uðtÞ
s

� f ;
which (formally) yields the surface diffusion flow in the limit s ! 0.
3. Discretization of anisotropic surface diffusion

The discretization of surface diffusion with curvature dependent energies faces a similar problem as the

discretization of the Willmore flow of surfaces: the derivative of the energy functional involves the term

$(jQ) in (2.8). This term reflects the fact that also Gaussian curvature appears in addition to the mean cur-

vature, and hence, a second-order splitting into the natural physical and geometrical variables u, j, and l
does not suffice.

Following the approach for Willmore flow in [12], we introduce a new variable jQ, which represents a

curvature concentration. Hence, we will discretize the surface diffusion flow using the variables
ðu; v;wÞ :¼ ðu; jQ;�qlÞ ð3:1Þ

in the following, where q 2 Rþ is a scaling factor (that will correspond to the inverse of the time step

below).
3.1. Time discretization

The starting point of our approach to the time discretization is the local optimization problem (2.11) and

(2.12). We introduce the new variable v and rewrite the energy as
Êðu; vÞ ¼
Z
X

Qþ c0ðruÞ þ m
v2

Q

� �
dx ð3:2Þ
with
c0ðruÞ ¼ �
u4x
Q3

þ
u4y
Q3

þ 1

Q3

 !
; Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jruj2

q
: ð3:3Þ
Hence, the local optimization problem can be rewritten as
Êðu; vÞ þ sq2

2

Z
X
jPðuðtÞÞrwj2QðtÞ dx ! min

u;v;w
ð3:4Þ
subject to the constraints
Z
X

ru � ru
Q

þ vu
Q

� �
dx ¼ 0 8u 2 H 1ðXÞ ð3:5Þ
and
 Z
X

ðPðuðtÞÞrwÞ � rwQðtÞ þ q
s
ðu� uðtÞÞw

� �
dx ¼ 0 8w 2 H 1ðXÞ: ð3:6Þ
Note that (3.5) represents the identity v = jQ, it can be derived using Gauss� Theorem via
Z
vu

dx ¼
Z

ju dx ¼
Z

div
ru
� �

u dx ¼ �
Z ru � ru

dx:

X Q X X Q X Q
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This variational problem already exhibits a certain time discretization and a linearization of the con-

straint, but still involves the minimization of strongly nonlinear functionals, which we shall approximate

further in the following. For the time discretization we use the decomposition 0 = t0 < t1 < � � � < tN = S,

with time step sk: = tk � tk�1 and qk :¼ 1
sk
. We shall denote the solution (u,v,w) at time step tk by (uk,vk,wk),

and define the solution in between via the interpolation
uð:; tÞ ¼ uð:; tkÞ
t � tk�1

sk
þ uð:; tk�1Þ

tk � t
sk

:

In order to obtain a convex quadratic optimization problem instead of (3.4) we use a quadratic expansion

of the convex terms and a linear expansion in the potentially non-convex terms, which yields
Êðuk; vkÞ �
Z
X

jrukj2 þ jruk�1j2

2Qk�1
þ c0ðruk�1Þ

 !
dxþ

Z
X

C0ðruk�1Þrðuk�1 � ukÞ þ m
ðvkÞ2

Qk�1

 !
dx;
where C0(p) = $pc0(p). Moreover, we use a lagged diffusivity approximation in the definition of the curva-
ture concentration, i.e., we use Qk�1 in the denominators of (3.6). Eliminating the constant terms we can

state the semi-discrete optimization problem as the minimization of
Jkðuk; vk;wkÞ ¼
Z
X

jrukj2

2Qk�1
þ C0ðruk�1Þ � ruk�1 þ m

ðvkÞ2

Qk�1
þ qk

jPk�1rwkj2

2
Qk�1

 !
dx
subject to the constraints
Z
X

ruk � ru

Qk�1
þ vku

Qk�1

� �
dx ¼ 0 8u 2 H 1ðXÞZ

X
ðPk�1rwkÞ � rwQk�1 þ ðuk � uk�1Þw
� 	

dx ¼ 0 8w 2 H 1ðXÞ;
with Pk�1: = P(uk�1).

Using additional Lagrangian variables pk 2 H1(X) and qk 2 H1(X), we can derive a linear system char-

acterizing the minimizer of this constrained optimization problems. For this sake we again denote the L2

scalar product by Æ.,.æ, and define the bilinear forms
Akðu;wÞ :¼
Z
X

ru � rw

Qk�1
dx; ð3:7Þ

Bkðu;wÞ :¼
Z
X
ðPk�1ruÞ � rwQk�1 dx; ð3:8Þ

Ckðu;wÞ :¼
Z
X

uw

Qk�1
dx ð3:9Þ
and the right-hand sides
ðf k;wÞ :¼
Z
X
C0ðruk�1Þ � rw dx ð3:10Þ

ðgk;wÞ :¼
Z
X
uk�1w dx: ð3:11Þ
The semi-discrete problem is then given by computing the weak solution (uk, vk, wk, pk, qk) 2 H1(X)5 of
the variational equations
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Akðuk;u1Þ þAkðpk;u1Þ þ hqk;u1i ¼ ðf k;u1Þ;
2mCkðvk;u2Þ þ Ckðpk;u2Þ ¼ 0;

qkB
kðwk;u3Þ þBkðqk;u3Þ ¼ 0;

Akðuk;u4Þ þ Ckðvk;u4Þ ¼ 0;

Bkðwk;u5Þ þ huk;u5i ¼ ðgk;u5Þ;

ð3:12Þ
for all test function uj 2 H1(X), j = 1, . . . ,5.
A closer look at this variational problem shows that the Lagrangian variables can be eliminated, because

the second equation implies pk = �2mvk and the third one yields $qk = �qk$w
k. Moreover, since (3.12) is

independent of the mean value of qk, we may choose it such that qk = �qk w
k. Consequently, we arrive

at the smaller, but non-symmetric problem
Akðuk;uÞ � 2mAkðvk;uÞ � qkhwk;ui ¼ ðf k;uÞ 8u 2 H 1ðXÞ;
Akðuk;wÞ þ Ckðvk;wÞ ¼ 0 8w 2 H 1ðXÞ;
Bkðwk; gÞ þ huk; gi ¼ ðgk; gÞ 8g 2 H 1ðXÞ:

ð3:13Þ
However, this system can easily be made symmetric with minor modifications, e.g., by taking multiples of

some lines and changing the order of equations and variables to (vk, wk, uk), we obtain
Ckðvk;wÞ þAkðuk;wÞ ¼ 0 8w 2 H 1ðXÞ;
qkB

kðwk; gÞ þ qkhuk; gi ¼ qkðgk; gÞ 8g 2 H 1ðXÞ;

Akðvk;uÞ þ qkhwk;ui � 1

2m
Akðuk;uÞ ¼ � 1

2m
ðf k;uÞ 8u 2 H 1ðXÞ:

ð3:14Þ
Using standard arguments for symmetric indefinite systems (cf. [5]), one can show that (3.14) is equiv-

alent to the saddle-point problem
inf
ðv;wÞ

sup
u

Lkðv;w; uÞ;
with the Lagrangian
Lkðv;w; uÞ ¼ 1

2
Ckðv; vÞ þ qk

2
Bkðw;wÞ þAkðv; uÞ þ qkhw; ui �

1

4m
Akðu; uÞ � qkðgk;wÞ þ

1

2m
ðf k; uÞ:
In this form, the curvature concentration v and the chemical potential w play the role of primal, and the

height function u plays the role of a dual variable (which obviously could be interchanged).

In order to verify the well-posedness of (3.13), we first transfer the problem into the standard form (cf.

[5])
aððv;wÞ; ðw; gÞÞ þ bððw; gÞ; uÞ ¼ ðf1; ðw; gÞÞ 8ðw; gÞ 2 H 1ðXÞ2;
bððv;wÞ;uÞ � cðu;uÞ ¼ ðf2;uÞ 8u 2 H 1ðXÞ;

ð3:15Þ
with the bilinear forms
aððv;wÞ; ðw; gÞÞ ¼ Ckðv;wÞ þ qkB
kðw; gÞ;

bððv;wÞ;uÞ ¼ Akðv;uÞ þ qkhw;ui;

cðu;uÞ ¼ 1

2m
Akðu;uÞ;
and the right-hand sides
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ðf1; ðw; gÞÞ ¼ qkðgk; gÞ;

ðf2;uÞ ¼ � 1

2m
ðf k;uÞ:
For the system (3.15), we can use a well-known result for saddle-point problems (cf. [5, p.47]), which we

rewrite for the specific setup we use:

Lemma 4. Let a, b, and c, be continuous bilinear forms satisfying the following conditions for positive real
constants a1, a2, a3:

(i) Kernel-ellipticity of a:
aððv;wÞ; ðv;wÞÞ P a1kðv;wÞk2
for all (v,w) 2 H1(X)2 satisfying b((v,w),.) ” 0.

(ii) Kernel-ellipticity of c:
cðu; uÞ P a2kuk2
for all u 2 H1(X) satisfying b((.,.),u) ” 0.

(iii) Inf–Sup condition:
inf
u2H1ðXÞ

sup
ðv;wÞ2H1ðXÞ2

bððv;wÞ; uÞ
kukðkvk þ kwkÞ P a3:
Then there exists a unique solution (u,v,w) 2 H1(X)3 of (3.15), and there exists a positive real constant b such

that
kuk þ kvk þ kwk 6 b kf1k þ kf2kð Þ:

We shall now apply this well-posed result to (3.13).

Theorem 5. Let uk�1 2W1,1(X). Then there exists a unique weak solution (uk, vk,wk) 2 H1(X)3 of (3.13).
Proof. Due to Lemma 4, it suffices to verify the above conditions (i)–(iii). For the specific form of a we

obtain due to the uniform boundedness of Qk�1 an estimate of the form
aððv;wÞ; ðv;wÞÞ P m1

Z
X

v2 þ jrwj2
� �

dx:
Moreover, if b((v,w),.) ” 0, we obtain in particular b((v,w),v) = 0, which implies an estimate of the form
Z
X
jrvj2 dx P m2

Z
X
w2 dx:
Moreover, with /0 ” 1 we have
bððv;wÞ;/0Þ ¼ qk

Z
X
w dx ¼ 0:
Thus, we may combine the above estimates with a Poincaré-type inequality for w, from which we finally

arrive at
aððv;wÞ; ðv;wÞÞ P a1

Z
X

v2 þ jrvj2 þ w2 þ jrwj2
� �

dx
for some a1 > 0.
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Since for b((.,.),u) = 0 we obtain in particular b((u,u),u) = 0 and hence, u = 0, the kernel-ellipticity for the

bilinear form c is trivial and follows with c(u,u)P 0.

In order to verify the inf–sup condition we use the estimate
inf
u2H1ðXÞ

sup
ðv;wÞ2H1ðXÞ2

bððv;wÞ; uÞ
kukðkvk þ kwkÞ P inf

u2H1ðXÞ

bððu; uÞ; uÞ
2kuk2

P a2 > 0;
which is due to the specific form of b and the uniform boundedness of Qk�1. h

We can also incorporate a deposition flux in a straightforward way by changing gk to
ðgk;wÞ ¼
Z
X
ðuk�1wþ skfwÞ dx:
3.2. Finite element discretization

For the finite element discretization we shall use piecewise linear elements in the space
Vh :¼ fu 2 C0ðXÞ \ H 1ðXÞjujT is linearg ð3:16Þ
on a regular triangularization Th of X ¼
S

T2Th
T .

The mesh size h is given by
h ¼ max
T2Th

max
x1;x22T

jx1 � x2j:
We can directly perform a finite element discretization of (3.13) inV3
h, which turns out to be equivalent to a

finite element discretization of (3.12) in V5
h and subsequent elimination of the Lagrange parameters. This

yields the following fully discrete scheme:

Scheme 1. Compute an approximation u0h 2 Vh of the initial value u0.For k = 1,. . . ,N:

� Assemble the right-hand sides
ðf k
h ;wÞ :¼

Z
X
C0ðruk�1

h Þ � rw dx ð3:17Þ

ðgkh;wÞ :¼
Z
X
uk�1
h w dx ð3:18Þ
with Qk�1
h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jruk�1

h j2
q

and an approximation fh of f (using quadrature). Moreover, define the bilinear
forms
Ak
hðu;wÞ :¼

Z
X

ru � rw

Qk�1
h

dx; ð3:19Þ

Bk
hðu;wÞ :¼

Z
X
ðPk�1

h ruÞ � rwQk�1
h dx; ð3:20Þ

Ck
hðu;wÞ :¼

Z
X

uw

Qk�1
h

dx; ð3:21Þ
with Pk�1
h ¼ Pðuk�1

h Þ.
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� Compute the discrete solution ðukh; vkh;wk
hÞ 2 V3

h satisfying
Ak
hðuk;uÞ � 2mAk

hðvk;uÞ � qkhwk;ui ¼ ðf k
h ;uÞ 8u 2 Vh;

Ak
hðuk;wÞ þ Ck

hðvk;wÞ ¼ 0 8w 2 Vh;

Bk
hðwk; gÞ þ huk; gi ¼ ðgkh; gÞ 8g 2 Vh:

ð3:22Þ
Note that due to the choice of piecewise linear finite elements, ruk�1
h and consequently Qk�1

h , Pk�1
h are

constant on each triangles, and hence all integrations in the above bilinear forms and the right-hand side

f k
h can be carried out exactly.

As in the semi-discrete setting in Theorem 5 we can easily verify the well-posedness of the discrete system.

Moreover, we can verify volume conservation for the discrete scheme by using g ” 1. As far as as energy decay

is concerned, we obtain from the local variational principle used for constructing the scheme that
Êðuk; vkÞ þ sk

Z
X
jPk�1rlkj2Qk�1 dx 6 Eðuk�1Þ;
i.e., the violation of the energy decay is equal to Êðuk; vkÞ � EðukÞ, which can be expected to be of first order

in time.
4. Solution of the discretized problem

Due to the non-symmetric form of the variational problem (3.22), we also obtain a non-symmetric prob-

lem for the nodal values ðu; v;wÞ 2 R3N in each step, which is of the form
A �2mA �qkM

A C 0

M 0 B

0
B@

1
CA

u

v

w

0
B@

1
CA ¼

f

0

g

0
B@

1
CA: ð4:1Þ
Here, M is a symmetric mass-matrix, C is a scaled symmetric mass matrix, and A and B are stiffness matri-

ces corresponding to second order elliptic differential operators.
As we have seen above we can transform the system (4.1) to the symmetric one
A �2mA �qkM

�2mA �2mC 0

�qkM 0 �qkB

0
B@

1
CA

u

v

w

0
B@

1
CA ¼

f

0

�qkg

0
B@

1
CA: ð4:2Þ
We can now either interpret u as a primal and (v,w) as dual variables, or vice versa (by suitable reordering of

variables and equations). For small system size, in particular in the one-dimensional case, we can solve this

linear system by LU- or generalized Cholesky decomposition. For larger systems, we can perform an iter-

ative solution of this symmetric system by applying standard Krylov-subspace methods like preconditioned
GMRES, MINRES, or QMR (cf. [22] for an overview).

Alternatively, we can also obtain the linear system
A C 0

0 2mAþ C qkM

M 0 B

0
B@

1
CA

u

v

w

0
B@

1
CA ¼

0

�f

g

0
B@

1
CA ð4:3Þ
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Fig. 2. Evolution of the interface for � = 1, m = 10�4, f ” 0, for the first initial value.
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by performing linear manipulations of the first two lines in (4.1). The advantage of (4.3) is that the diagonal

blocks are discretizations of elliptic differential operators, while the off-diagonal terms are just mass matri-

ces. Consequently, it seems reasonable to apply a multigrid method as a solver (or as a preconditioner for
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GMRES) to (4.3), using block Gauss-Seidel smoothers (some care has to be taken of the anisotropic term

B). This approach has been used in all the two-dimensional examples presented below and turned out to be

a efficient and robust solver.
5. Numerical results

In the following, we present some numerical results for strongly anisotropic surface diffusion flows and

some parametric studies in the parameters � and m, as well as in the coverage (i.e., the volume V(0)) and the

deposition flux f.

5.1. Curve diffusion

In this section, we present some results for curve diffusion processes, i.e., for C being a curve in R2. For

all simulations we used a uniform spatial discretization of X = (0,1) with grid size h = 10�3. We start with a

the evolution of an interface described by a continuous height function
u0ðxÞ ¼
constant for x 2 ½0; 0:25� [ ½0:75; 1�;
0:1þ 0:01 cosð4pxÞ for x 2 ð0:25; 0:75Þ:




We also use this starting value for the parametric studies below. For the first two simulations we used an

anisotropy parameter � = 1 and a curvature coefficient m = 10�4, in absence of a deposition flux, i.e., f ” 0.

The obtained evolution (computed with a time step s = 2 · 10�6) is illustrated by plots of the interfaces

obtained at times t = 4ks, k = 0,1, . . . ,5, in Fig. 2. One observes that faceting, i.e., the formation of flat parts

of the interface, occurs already during the early stage of the evolution. The evolving shape forms several

hills and valleys, some of which become unstable and disappears during the later stage. Finally, the inter-

face converges to a shape with three faceted substructures.
The evolution of the surface energy EðuðtÞÞ and the change of the volume V(t) � V(0) are shown in

Fig. 3. One observes that the energy is decreasing during the evolution as expected and finally becomes con-

stant when the interface has reached an equilibrium shape, which is possibly only a local minimum of the
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Fig. 3. Evolution of the surface energy (left) and the volume (right) for � = 1, m = 10�4, f ” 0, for the first initial value.
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non-convex energy functional. The plot of the volume change confirms the discrete volume conservation,

since the maximal error over all timesteps is below the machine precision of 10�16. The same behaviour of

the energy and the volume have been observed also in all further simulations presented below.

The second simulation is carried out with the same parameters as the first one, but with the initial height

u0(x) = 0.1 + 0.005 · cos(9px). In this case, the evolution is faster and we used a time step of s = 4 · 10�7.
We illustrate the obtained evolution by plots of the interface at time t = 3ks, k = 0, . . . ,5. Again we obtain

faceting but in the first example, but the limiting equilibrium shape is a different one, with a higher value of

the surface energy and the same orientation of the facets. Hence, this numerical example suggests that the

surface diffusion flow can converge to local minima in strongly anisotropic cases, probably to the ones clos-

est to the initial shape.

Our first parametric study varies the anisotropy parameter � for constant m = 10�4, f ” 0 and an initial

coverage V(0) = 0.09 (see Fig. 4). As expected, the surface evolves towards a flat surfaces for � < 1/3, quite

similar to the isotropic case � = 0, but of course faster for smaller �. We show the result for � = 0.3 and the
more interesting results for the strong anisotropies � = 0.5, 1, 1.5 in Fig. 5. The first plot shows the front C
at time steps t = 0, 10�4, . . . , 2 · 10�3 and one clearly observes the trend toward a flat curve. The second

plot from the top shows the front at time steps t = 0.4 · 10�5, . . . , 8 · 10�4, the third at time steps t = 0,
Fig. 5. Evolution of the interface for different values of the anisotropy parameter �.



Fig. 6. Evolution of the interface for different values of m.
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Fig. 7. Evolution of the interface for different initial coverages V(0).
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Fig. 8. Evolution of the interface for different deposition fluxes f.
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10�5, . . . , 2 · 10�6, and the one at the bottom at time steps t = 0, 10�6, . . . , 2 · 10�5. One observes that the

time scale of the evolution reduces with increasing �, i.e., the evolution towards an equilibrium and the fac-

eting is faster for higher anisotropy. Moreover, the length scale of the evolving and equilibrium structures

decreases with increasing anisotropy parameter, which is caused by the changing orientation of facets.

From our simulations it seems that the maximal height of the film does not exceed a certain maximal value,

but for larger � there occurs a transition from three to five hills and valleys. Hence the facets become steeper
as expected, but the maximum height can even decrease compared to smaller values �.

A second parametric study concerns the coefficient m of the curvature term. We illustrate the results for

m = 10�m, m = 1, . . ., 6, fixing � = 1, f ” 0, and V(0) = 0.09. In Fig. 6, we plot the evolving fronts at time steps

0, 10�5, . . . , 2 · 10�4.

One observes that for increasing values of m, the size of the rounded parts of the surface increases (and

consequently, their curvature decreases), while the orientation of the faceted parts remains the same (except

for very large values of m, where the curvature effect becomes global). Moreover, the time and spatial scale

are changing large m, but taking into account the similar results for m = 10�4, m = 10�5 and m = 10�6 it seems
that there exists a limiting flow as m ! 0.



Fig. 9. Evolution of the surface for the initial value u0.
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Fig. 10. Evolution of the surface for the initial value û0.
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Fig. 7 illustrates the effects of varying the coverage V(0) by plotting the evolving interfaces at

times t = 0, 10�5, . . . , 2 · 10�4, for the coverages V(0) = 0.045, 0.09, 0.18, 0.36, 0.72, and 1.44.

One observes that the shapes are similar for the smaller values of the initial coverage, but for
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the largest value (where the height becomes larger than the length) there is a transition in the equi-

librium shape.

Our final parametric study concerns the deposition flux f. We perform tests with two uniform deposition

fluxes, f ” 102 and f ” 103, as well as with a linearly increasing flux f = 103x and a parabolic flux profile

f = 4 · 103x(1 � x). The resulting interfaces at times t = 0, 10�5, . . . , 2 · 10�4 are plotted in descending or-
der in Fig. 8. For the spatially homogeneous deposition fluxes one observes a very similar evolution as in

the absence of deposition flux, but with linearly growing height. For the spatially varying deposition flux,

we obviously obtain faster growth in areas of higher flux, but still the orientation of facets remains

unchanged.
5.2. Surface diffusion

We now present two results for surface diffusion, which are both obtained for � = 1, m = 10�3, and f ” 0.
The computational domain is given by X = (�1,1)2, and the discretization is performed on a regular grid of

size h = 10�2, with a time step s = 10�2.

In the first example, we use the initial value
u0ðx; yÞ ¼ 0:2� 0:05 cosðpxÞ cosðpyÞ:

In Fig. 9, we plot the resulting surface at times t = 3ks, k = 1, . . . ,5, and after a larger time at t = 0.45 (from

top to bottom). One observes that faceting occurs mainly in the early stage of the evolution, and the arising
shapes seem to converge to a local energy minimum. The evolution therefore becomes almost stationary in

the later stage.

In the second example, we divide the wavelength by two in the initial value, i.e., we use
û0ðx; yÞ ¼ 0:2� 0:05 cosð2pxÞ cosð2pyÞ:

Fig. 10 shows plots of the obtained surfaces at the same time steps as for the first example. The

behaviour is similar, but possibly the local energy minimizer the evolution converges to is a different
one.

We finally mention that parametric studies with respect to �, m, f, and V(0) lead to similar results as for

curve diffusion.
6. Conclusions and outlook

We have presented numerical methods for surface diffusion arising in systems with anisotropic surface
energies involving a curvature dependent term, and discussed some of their properties. The presented

numerical results confirmed the applicability of this approach to strongly anisotropic cases, where faceting

of the evolving curves or surfaces occurs, while the corners are rounded.

To our knowledge, this paper presents the first simulation of the full surface diffusion model with cur-

vature dependent energy. Due to the practical importance of this problem, the methods and results pre-

sented here are also the starting point towards the simulation of several crystal growth phenomena that

can be modeled by anisotropic surface diffusion, and the coupling with other physical effects such as elastic

relaxation in heteroepitaxial growth (cf. e.g. [18]) having in mind important technological applications such
as self-assembled silicon–germanium quantum dots (cf. e.g. [4]). From a mathematical viewpoint, an impor-

tant task for future research is the detailed analysis of the surface diffusion model and the numerical meth-

ods, which is rather incomplete in the isotropic case (cf. [3,13,20]), and completely open in the anisotropic

case with curvature dependence.



M. Burger / Journal of Computational Physics 203 (2005) 602–625 625
Acknowledgements

The author thanks Günther Bauer (University Linz) for initiating his interest in surface diffusion and

many stimulating discussions, and Russel Caflisch (UCLA) for further stimulating discussions. This re-

search was carried out when the author was a CAM assistant professor at the Department of Mathematics,
UCLA. Financial support is acknowledged to the NSF through ITR Grant ACI-0321917 and to the ONR

through Grant N00014-02-1-0720.
References
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